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Introduction

Sequential design?

» stop for efficacy when the superiority of a treatment is clearly
established

» stop for futility when it is highly unlikely that efficacy can be
established

A primary statistical concern is to control the overall type 1 error
rate.

» The type 1 error rate may be inflated since multiple
adaptations and multiple potential hypotheses may be
considered.



Introduction

» Some researchers proposed a Bayesian sequential design that
uses alpha-spending functions(BSDASF).

» The alpha-spending function allocates the type 1 error rate
proportional to the amount of data used for interim analysis.



Introduction

> t7 = n(t;)/n where n is the allowed maximum sample size and
n(t;) is the number of observations up to the jth interim
analysis.

1. O’'Brien-Fleming(OF) alpha-spending function:
a1(t*) =2 = 20(z, )2/ V1*)

2. Pocock alpha-spending function:
az(t*) = alog{l + (e — 1)t*}

3. Power alpha-spending function: a3(t*) = (t*) «

4. Equal alpha-spending funtion: as(t*) = «



Introduction

In this paper, improved the BSDASF in the following aspects:
1. apply BSDASF to binary outcomes.

2. design a corresponding prior setting that enables incorporation
of historical information.

3. investigate the effects of maximum sample size n on
calculating decision rules.

4. propose a novel decision rule of stopping for futility.



Review of Bayesian sequential designs with alpha spending
functions

» X7 : a set of observations from the treatment group on the
parameter uT

> )?C . a set of observations from the congrol group on the
parameter pc

» Ho:pt < pcvs Ha:pur > pc

> At the jth interim analysis, there are a total of n(t;) patients.

> n(t;) = nr(t;) + nc(t))

» t7 = n(t;)/n : the information fraction at the jth interim
analysis.



Review of Bayesian sequential designs with alpha spending
functions

Algorithm 1. Sequential design with alpha-spending function «
(BSDASF)

At the jth interim analysis, j = 1,2,...,J, (t/ = 1)

1. Posterior updating : Update W(MT’XE) and W(MC|XQ)
where X¢, = (Xc,, X1, - X¢;) and X7, = (X7, X130, -0, XT,)

2. Posterior probabilities : Calculate the posteiior Erobability
of rejecting the null hypothesis, P(ur > uc]XTj,XCJ.)

3. Predictive posterior probabilities :

3.1 Generate data for the treatment group, n/2 — ny(t;) and
control group, n/2 — nc(t;) from current posterior
distributions.

3.2 Pool generated and observed data and calculate the predictive
posterior probability of rejecting null hypothesis,

Pl’e(/LT > ,LL(_"XTJ.,X(_"J., n).



Review of Bayesian sequential designs with alpha spending
functions

Algorithm 1. Sequential design with alpha-spending function «
(BSDASF)

4 Stopping for efficacy :
> If P(ur > uc\)?rj,)?cj) > Py(t7), stop the trial for efficacy.
Otherwise, go to step 5.
> Pu(tj*) is the critical value that uses an alpha-spending
function to control the overall type 1 error rate.
5 Stopping for futility :
> If Pre(ur > uc\)?rj,)?cj, n) < Py, stop the trial for futility.
Otherwise, continue the trial.
» P; is a preset decision bound, which depends on the goal and
budget of the trial but not on t.



BSDASF for binary outcome

Xr. % B(1,pr), Xc, " B(1, pc) for i =1,2,...,n/2.

Ho : pt < pc vs Ha: pT > pc

m(pc) = Beta(a, fc) according to prior knowledge such that
accrﬁc = Po

m(pr) = Beta(1,1) = U(0, 1) (noninformative prior)
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BSDASF for binary outcome

> N7t NC(y) The total of observations in the interim
analysis at t;

> Let )_(TJ = (X1, - XT,. ) XC (xcy, ..,,xcnc(tj))’, then the
posterior distributlons for pT and pc are
m(pr|Xr) = Beta(1+ X7 xr, 1+ nr(ty) — X7 xr)
m(pc|Xc;, ac, Bc) =
Beta(ac + 3274 xc;, B + nel) — 74 xc)



BSDASF for binary outcome

» The Bayesian sequential design proposed for binary outcomes
is similar to Algorithm 1.

» Step 5 of Algorithm 1 is modified so that the trial will be
stopped for futilitx if ~
P(Pre(pT > pc|XTj,XCJ.,OzC,ﬁC, n) > Puf) < P

> P, is preset as the threshold for rejecting the null hypothesis
if all data are analyzed together. (ie, no interim analysis)

» P, is a preset threshold that can be chosen to control power
and actual sample size.



BSDASF for binary outcome

Algorithm 1.1 Calculate the predictive critical value Py with «a, n
1. Form=1,2,...,Npp :
(a) Generate )?? = (X?;,X’T"Z,...,Xg’”)’ X (n7,0.5)
(b) Generate X = (X&, X&, ...,Xg’nc)’ i (nc,0.5)
(c) Calculate P™ = P(pt > pc|XF, X&, ac, Bc)
2. Denote P = (P!, P2, ... PNerY
3. Py is set as the (1 — a)th quantile of the P



BSDASF for binary outcome

Algorithm 2. Calculate the critical value P,(t]) at
t',j =1,2,...,J with alpha-spending function a( *) and preset P

1. Form=1,2,...,Npp :
(a) Generate X" = (XE,XE, ...,X?’HT) 'N
(b) Generate X7 = (X(’_-’l’,X(’_-’;,...,X(’_-"C) ~ (n¢,c)
(c) Forj=1,2, .., J,
Calculate P™(t7) = P(pt > pC\X%?,XgJ?,aC,BC), where
)_("T’}J_('g’ is the first nr(t;), nc(t;) elements of )??,)?g’
(d) Denote P™ = (P™(t{),..., P"(t}))
(e) Forj=1,2, ..., J,
Calculate P(Pre(pt > pC|XT,XC,aC,6C) > Pyr).

If at any j, 7(pT — pc > 0| X1, Xc,, ac, Bc) < Py, set
Pm(t;)=0forj =j+1,j+2,..,J.



BSDASF for binary outcome

Algorithm 2. Calculate the critical value P,(t;) at
t/,j =1,2,...,J with alpha-spending function a(t*) and preset P

2 Denote Py = (P!, P2, ..., ﬁNfeP)’, Nrep % J matrix

3 Pu(t]) is set as the (1 — «(t;]))th quantile of the 1st column
of matrix Py

4 Forj=2,3,...J:

(a) Let P; be a matrix composed of the rows of P;_; such that

(j — 1)st element of the row be smaller than or equal to
Pu(tﬂl)
(b) Pu(t;) is set as the (1 — Aa(t;"))th quantile of the jth column

of matrix Pj, where Aa(t}) = a(t]) — a(t_)



BSDASF for binary outcome

Algorithm 3. Power calculation for BSDASFB with
alpha-spending function a(t*). WLOG, let pr =d +c¢,pc = ¢
1. Form=1,2,...,Nep :
(a) Draw X = (X2, X, .., X ) % B(nr,d + c)
(b) Draw XZ = (X2, X2, ... X2 ) % B(nc, c)
(c) Forj=1,2, ..., J,
Calculate P’”(tf) = P(pt > pc\)_("ﬁ,)_('g,ac,ﬁc), where
X%’Xg] is the first nt(t;), nc(t;) elements of )?’T",)?g
(d) Denote P™ = (P™(t{),..., P(t}))
(e) Forj=1,2, .., J,
Calculate P(Pre(pT > pC|XT,XC,aC,5C) > Pyr).

If at any j, 7(pT — pc > 0|XT7XCaaC»6C) < Py, set
Pm(t;) =0 forj =j+1,j+2,..,J.



BSDASF for binary outcome

Algorithm 3. Power calculation for BSDASFB with
alpha=spending function «a(t*). WLOG, let pr =d + c,pc = ¢
2 Denote P; = (ﬁl, P2, ..., I5N’EP)/, Nyep % J matrix
3 Forj=2,...,J+1, Let P; be a matrix composed of the rows
of Pj_1 such that the (j — 1)st element of the row be smaller
than or equal to Py(t/,)
4 [3=(the number of rows of matrix Pji1)/Nyep.

5 Power=1— 3



Simulation-Sensitivity Analysis

» Assess how the decision boundary(P,(t*)) changes with
choice of a¢

» Larger a is associated with more confidence in that prior p,.

» 2 conditions: (1)pg = pc = 0.5 and (2)po # pc



Simulation-Sensitivity Analysis
(1) po=pc =05
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Figure: Comparison of critical values P,(t*) for BSDASFB at different
ac, when pg = pc = 0.5, dn = 840 and n = 420

» When n was fixed, P,(t*) decreased as a increased.
» When n was larger, P,(t*) were larger



Simulation-Sensitivity Analysis
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Figure: Comparison of critical values P,(t*) when ¢ =1 and a¢c = 12
at different e(e = po — pc)



Simulation-Sensitivity Analysis

> Based on the results of sensitivity analysis, we suggest setting
ac, Bc to small values, unless there is enough evidence to
show the historical intormation is very similar to the
experiment.

» Typically, a¢ can be set at 1, and ¢ be set such that

ac
actpc — Po:




Methods Comparision studies

(1) Comparison of powers between the BSDASFB and the

frequentist sequential design

> setac =Fc=1,n=100,e=0,P, =0

Bayesian Frequentist
d(pyr—pes) OF Pocock Power Equal OF Pocock Power
0 0.0508 0.0495 0.0498 0.0496 0.0505 0.0499  0.0503
0.1 0.3786  0.3264 0.3498 0.3134 0.1536  0.1339  0.1403
0.2 0.8772 0.8284 (.8502 0.8128 03616 03082  0.3262
0.3 0.9886 0.9864 0.9878 0.9860 0.6598 0.5873  0.6130
0.4 1.0000 1.0000 1.0000 1.0000 0.9154  0.8747  0.8902

Abbreviation: OF, O’Brien-Fleming.



Methods Comparision studies

(2) Comparison of BSDASFB with different alpha-spending
functions

> set a¢c = f¢c = 1l.e =0,n =100, and n = 400
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Methods Comparision studies

(2) Comparison of BSDASFB with different alpha-spending

functions
OF Pocock Power Equal

d P Size Power Size Power Size Power Size Power
005 0 87.35 0.162 84.82 0.154 86.69 0.156 84.43 0.139
0.1 0 74.51 0.398 68.32 0.354 68.93 0.368 66.07 0.331
015 0 69.35 0.685 63.87 0.615 64.04 0.640 62.26 0.597
02 0 66.15 0.878 58.62 0.838 59.65 0.861 56.29 0.831
025 0 60.41 0.978 47.26 0.959 48.33 0.971 44.96 0.958
0.3 0 52.05 0.997 37.38 0.996 38.68 0.996 35.70 0.996
035 0 45.15 0.999 30.32 0.999 31.33 0.999 29.07 0.999
04 0 39.63 1 25.43 0.999 25.89 0.999 24.60 0.999
045 0 3351 1 22:25 il 2261 1 20.50 1



Methods Comparision studies

(2) Comparison of BSDASFB with different alpha-spending
functions

» BSDASFB with OF requires more samples and has greatest
power comparred to any other alpha-spending function.

» The OF alpha-spending function allocates less type 1 error
rate at very early states, therefore, is less likely to stop the
trial early.

» We suggest to use OF function.



Methods Comparision studies

(3) Comparison of powers and actual sample sizes at different d
and P,

OF Pocock Power Equal

d P, Size Power Size Power Size Power Size Power
005 0 87.35  0.162 84.82 0.154 86.69 0.156 8443  0.139
0.1 0 7451 0398 68.32 0.354 68.93 0368  66.07 0331
0.15 0 69.35 0.685 63.87 0.615 64.04 0.640 62.26 0.597
02 0 66.15 0.878 58.62 0.838 59.65 0.861 56.29 0.831
025 0 6041 0978 4726 0.959 48.33 0.971 4496 0958
03 0 5205 0997 37.38 0.996 38.68 0996 3570  0.99%
035 0 45.15 0.999 30.32 0.999 3133 0.999 29.07 0.999
04 0 3963 1 2543 0.999 25.89 0.999 2460 0999
045 0 3351 1 2205 1 2261 1 20.50 1

0.1 005 7271 0.342 65.90 0314 66.32 0.335 64.63 0.303
0.1 0.1 7150 0333 64.84 0312 65.10 0.321 63.99 0.300
0.1 02 7032 0313 63.58 0.3118 64.66 0.301 63.30 0.299
02 005 6508  0.800 58.15 0.769 59.10 0.788 56.05 0.759
0.2 0.1 6476 0.772 57.90 0.755 58.52 0.762 55.80 0.739
0.2 02 64.25 0.719 57.55 0.711 58.03 0.713 55.68 0.705
03 005 5182 0973 37.10 0.971 38.25 0.972 35.12 0.970
03 0.1 51.16  0.966 36.88 0.965 D) 0.965 34.82 0.964
0.3 02 50.57  0.939 36.25 0.938 37.10 0.938 34.30 0.938

» The power and actual sample size decreases as P, increases.



Methods Comparision studies

(4) Comparison two stopping rules for futility
» Proposed : P(Pre(pr > pC])_(Tj,)?CJ.,aC,BC, n) > Py) < P,
> ZY : Pre(ur > pc| Xt Xc, n) < Py

Py(Py =0.5) Py(Py =0.5)

0.5 0.6 0.7 0.8 0.5 045 0.4 0.35
Py OF Powers Actual Sample Sizes
021  Proposed 0.750 0.744 0.743 0.742 3393 3385 3368 33.65
028 ZY 0750 0740 0705 0.704 5819 52.08 4992 4988
Py Pocock
0.20  Proposed 0.750 0.741 0.733  0.731 3260 3251 3224 3215
027 ZY 0750 0724  0.695 0.686 56.53 5039 4818 4813
Py Power
020 Proposed 0.750 0.741 0.734  0.732 3295 3278 3268 3263
028 ZY 0750 0735 0.699 0.698 57.03 50.76 4880 4871
Py Equal

0.15  Proposed 0.750 0742 0.735 0.730 3247 3243 3225 3220
020 Z2Y 0.750  0.731  0.690 0.685 56.38 50.3 4822  48.19



