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Introduction

Sequential design?

I stop for efficacy when the superiority of a treatment is clearly
established

I stop for futility when it is highly unlikely that efficacy can be
established

A primary statistical concern is to control the overall type 1 error
rate.

I The type 1 error rate may be inflated since multiple
adaptations and multiple potential hypotheses may be
considered.



Introduction

I Some researchers proposed a Bayesian sequential design that
uses alpha-spending functions(BSDASF).

I The alpha-spending function allocates the type 1 error rate
proportional to the amount of data used for interim analysis.



Introduction

I t∗j = n(tj)/n where n is the allowed maximum sample size and
n(tj) is the number of observations up to the jth interim
analysis.

1. O’Brien-Fleming(OF) alpha-spending function:
α1(t∗) = 2− 2Φ(zα/2/

√
t∗)

2. Pocock alpha-spending function:
α2(t∗) = αlog{1 + (e − 1)t∗}

3. Power alpha-spending function: α3(t∗) = (t∗)γα

4. Equal alpha-spending funtion: α4(t∗) = α



Introduction

In this paper, improved the BSDASF in the following aspects:

1. apply BSDASF to binary outcomes.

2. design a corresponding prior setting that enables incorporation
of historical information.

3. investigate the effects of maximum sample size n on
calculating decision rules.

4. propose a novel decision rule of stopping for futility.



Review of Bayesian sequential designs with alpha spending
functions

I ~XT : a set of observations from the treatment group on the
parameter µT

I ~XC : a set of observations from the congrol group on the
parameter µC

I H0 : µT ≤ µC vs Ha : µT > µC
I At the jth interim analysis, there are a total of n(tj) patients.

I n(tj) = nT (tj) + nC (tj)

I t∗j = n(tj)/n : the information fraction at the jth interim
analysis.



Review of Bayesian sequential designs with alpha spending
functions

Algorithm 1. Sequential design with alpha-spending function α
(BSDASF)
At the jth interim analysis, j = 1, 2, ..., J, (t∗j = 1)

1. Posterior updating : Update π(µT |~XTj
) and π(µC |~XCj

)

where ~XCj
= (XC1 ,XC2 , , ..,XCj

) and ~XTj
= (XT1 ,XT2 , , ..,XTj

)

2. Posterior probabilities : Calculate the posterior probability
of rejecting the null hypothesis, P(µT > µC |~XTj

, ~XCj
)

3. Predictive posterior probabilities :

3.1 Generate data for the treatment group, n/2− nT (tj) and
control group, n/2− nC (tj) from current posterior
distributions.

3.2 Pool generated and observed data and calculate the predictive
posterior probability of rejecting null hypothesis,
Pre(µT > µC |~XTj ,

~XCj , n).



Review of Bayesian sequential designs with alpha spending
functions

Algorithm 1. Sequential design with alpha-spending function α
(BSDASF)

4 Stopping for efficacy :
I If P(µT > µC |~XTj ,

~XCj ) ≥ Pu(t∗j ), stop the trial for efficacy.
Otherwise, go to step 5.

I Pu(t∗j ) is the critical value that uses an alpha-spending
function to control the overall type 1 error rate.

5 Stopping for futility :
I If Pre(µT > µC |~XTj ,

~XCj , n) ≤ Pl , stop the trial for futility.
Otherwise, continue the trial.

I Pl is a preset decision bound, which depends on the goal and
budget of the trial but not on t.



BSDASF for binary outcome

I XTi

iid∼ B(1, pT ), XCi

iid∼ B(1, pC ) for i = 1, 2, ..., n/2.

I H0 : pT ≤ pC vs Ha : pT > pC
I π(pC ) = Beta(αc , βC ) according to prior knowledge such that

αc
αC+βC

= p0
I π(pT ) = Beta(1, 1) = U(0, 1) (noninformative prior)



BSDASF for binary outcome

I nT (tj ), nC(tj ) : The total of observations in the interim
analysis at tj

I Let ~XTj
= (xT1 , ..., xTnT (tj )

)′, ~XCj
= (xC1 , ..., xCnC (tj )

)′, then the

posterior distributions for pT and pC are

π(pT |~XTj
) = Beta(1 +

∑nT (tj )
i=1 xTi

, 1 + nT (tj)−
∑nT (tj )

i=1 xTi
)

π(pC |~XCj
, αC , βC ) =

Beta(αC +
∑nC (tj )

i=1 xCi
, βC + nC (tj)−

∑nC (tj )
i=1 xCi

)



BSDASF for binary outcome

I The Bayesian sequential design proposed for binary outcomes
is similar to Algorithm 1.

I Step 5 of Algorithm 1 is modified so that the trial will be
stopped for futility if
P(Pre(pT > pC |~XTj

, ~XCj
, αC , βC , n) > Puf ) < Pl

I Puf is preset as the threshold for rejecting the null hypothesis
if all data are analyzed together. (ie, no interim analysis)

I Pl is a preset threshold that can be chosen to control power
and actual sample size.



BSDASF for binary outcome

Algorithm 1.1 Calculate the predictive critical value Puf with α, n

1. For m = 1, 2, ...,Nrep :

(a) Generate ~Xm
T = (Xm

T1
,Xm

T2
, ...,Xm

TnT
)′

iid∼ B(nT , 0.5)

(b) Generate ~Xm
C = (Xm

C1
,Xm

C2
, ...,Xm

CnC
)′

iid∼ B(nC , 0.5)

(c) Calculate Pm = P(pT > pC |~Xm
T ,

~Xm
C , αC , βC )

2. Denote ~P = (P1,P2, ...,PNrep)′

3. Puf is set as the (1− α)th quantile of the ~P



BSDASF for binary outcome

Algorithm 2. Calculate the critical value Pu(t∗j ) at
t∗j , j = 1, 2, ..., J with alpha-spending function α(t∗) and preset Pl

1. For m = 1, 2, ...,Nrep :

(a) Generate ~Xm
T = (Xm

T1
,Xm

T2
, ...,Xm

TnT
)′

iid∼ B(nT , c)

(b) Generate ~Xm
C = (Xm

C1
,Xm

C2
, ...,Xm

CnC
)′

iid∼ B(nC , c)

(c) For j=1, 2, ..., J,

Calculate Pm(t∗j ) = P(pT > pC |~Xm
Tj
, ~Xm

Cj
, αC , βC ), where

~Xm
Tj
, ~Xm

Cj
is the first nT (tj), nC (tj) elements of ~Xm

T ,
~Xm
C

(d) Denote ~Pm = (Pm(t∗1 ), ...,Pm(t∗J ))
(e) For j=1, 2, ..., J,

Calculate P(Pre(pT > pC |~XT , ~XC , αC , βC ) > Puf ).

If at any j, π(pT − pC > 0|~XTj ,
~XCj , αC , βC ) ≤ Pl , set

Pm(t∗j′) = 0 for j ′ = j + 1, j + 2, ..., J.



BSDASF for binary outcome

Algorithm 2. Calculate the critical value Pu(t∗j ) at
t∗j , j = 1, 2, ..., J with alpha-spending function α(t∗) and preset Pl

2 Denote P1 = (~P1, ~P2, ..., ~PNrep)′, Nrep × J matrix

3 Pu(t∗1 ) is set as the (1− α(t∗1 ))th quantile of the 1st column
of matrix P1

4 For j = 2, 3, ...J :

(a) Let Pj be a matrix composed of the rows of Pj−1 such that
(j − 1)st element of the row be smaller than or equal to
Pu(t∗j−1)

(b) Pu(t∗j ) is set as the (1−∆α(t∗j ))th quantile of the jth column
of matrix Pj , where ∆α(t∗j ) = α(t∗j )− α(t∗j−1)



BSDASF for binary outcome

Algorithm 3. Power calculation for BSDASFB with
alpha-spending function α(t∗). WLOG, let pT = d + c , pC = c

1. For m = 1, 2, ...,Nrep :

(a) Draw ~Xm
T = (Xm

T1
,Xm

T2
, ...,Xm

TnT
)′

iid∼ B(nT , d + c)

(b) Draw ~Xm
C = (Xm

C1
,Xm

C2
, ...,Xm

CnC
)′

iid∼ B(nC , c)

(c) For j=1, 2, ..., J,

Calculate Pm(t∗j ) = P(pT > pC |~Xm
Tj
, ~Xm

Cj
, αC , βC ), where

~Xm
Tj
, ~Xm

Cj
is the first nT (tj), nC (tj) elements of ~Xm

T ,
~Xm
C

(d) Denote ~Pm = (Pm(t∗1 ), ...,Pm(t∗J ))
(e) For j=1, 2, ..., J,

Calculate P(Pre(pT > pC |~XT , ~XC , αC , βC ) > Puf ).

If at any j, π(pT − pC > 0|~XTj ,
~XCj , αC , βC ) ≤ Pl , set

Pm(t∗j′) = 0 for j ′ = j + 1, j + 2, ..., J.



BSDASF for binary outcome

Algorithm 3. Power calculation for BSDASFB with
alpha=spending function α(t∗). WLOG, let pT = d + c , pC = c

2 Denote P1 = (~P1, ~P2, ..., ~PNrep)′, Nrep × J matrix

3 For j = 2, ..., J + 1, Let Pj be a matrix composed of the rows
of Pj−1 such that the (j − 1)st element of the row be smaller
than or equal to Pu(t∗j−1)

4 β=(the number of rows of matrix Pj+1)/Nrep.

5 Power=1− β



Simulation-Sensitivity Analysis

I Assess how the decision boundary(Pu(t∗)) changes with
choice of αC

I Larger αC is associated with more confidence in that prior po .

I 2 conditions: (1)p0 = pC = 0.5 and (2)p0 6= pC



Simulation-Sensitivity Analysis

(1) p0 = pC = 0.5

Figure: Comparison of critical values Pu(t∗) for BSDASFB at different
αC , when p0 = pC = 0.5, dn = 840 and n = 420

I When n was fixed, Pu(t∗) decreased as αC increased.
I When n was larger, Pu(t∗) were larger



Simulation-Sensitivity Analysis

(2) p0 6= pC

Figure: Comparison of critical values Pu(t∗) when αC = 1 and αC = 12
at different e(e = p0 − pC )



Simulation-Sensitivity Analysis

I Based on the results of sensitivity analysis, we suggest setting
αC , βC to small values, unless there is enough evidence to
show the historical intormation is very similar to the
experiment.

I Typically, αC can be set at 1, and βC be set such that
αC

αC+βC
= p0.



Methods Comparision studies

(1) Comparison of powers between the BSDASFB and the
frequentist sequential design

I set αC = βC = 1, n = 100, e = 0,Pl = 0



Methods Comparision studies
(2) Comparison of BSDASFB with different alpha-spending
functions

I set αC = βC = 1.e = 0, n = 100, and n = 400



Methods Comparision studies

(2) Comparison of BSDASFB with different alpha-spending
functions



Methods Comparision studies

(2) Comparison of BSDASFB with different alpha-spending
functions

I BSDASFB with OF requires more samples and has greatest
power comparred to any other alpha-spending function.

I The OF alpha-spending function allocates less type 1 error
rate at very early states, therefore, is less likely to stop the
trial early.

I We suggest to use OF function.



Methods Comparision studies
(3) Comparison of powers and actual sample sizes at different d
and Pl

I The power and actual sample size decreases as Pl increases.



Methods Comparision studies

(4) Comparison two stopping rules for futility

I Proposed : P(Pre(pT > pC |~XTj
, ~XCj

, αC , βC , n) > Puf ) < Pl

I ZY : Pre(µT > µC |~XTj
, ~XCj

, n) ≤ Pl


